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Abstract

An analysis developed in previous work has been further refined in order to study the effect of heat

transfer on the heat capacity and phase angle measurements by TMDSC. In the present model, a tem-

perature gradient within the sample has been taken into account by allowing for heat transfer by ther-

mal conduction within the sample. The influence of the properties of the sensors, the heat transfer

conditions between the sensor and sample, and the properties of the sample have been investigated

by varying each parameter in turn. The results show that heat capacity measurements are reliable

only within a restricted frequency range, for which the experimental conditions are such that the heat

transfer phase angle depends linearly on the modulation frequency.
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Introduction

It is widely recognised that one of the main advantages of TMDSC is its ability to

measure the heat capacity and the change in heat capacity of a sample under isother-

mal conditions by calculating the ratio of the amplitude of the modulated heat flow to

the amplitude of the modulated heating rate [1–5]. However, it has also been noted

that the measured heat capacity deviates from the literature value and becomes in-

creasingly inaccurate as the frequency increases [6–8]. The difference between the

measured and literature values depends on the experimental conditions and the prop-

erties of the sample. For instance, the measured heat capacity of sapphire under

quasi-isothermal conditions is in good agreement with the literature value over a rela-

tively wide range of modulation periods (from 30 to 90 s with an amplitude of 0.2 K)

for a small sample mass (about 10 mg). For sample masses up to 50 mg, and for a pe-
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riod of 60 s and amplitude of 0.2 K, it remains constant, but then falls by more than

10% when the sample mass increases to 100 mg [1]. In contrast, for polymers the

measured heat capacity is relatively constant for a sample mass of several milligrams

only when measured with periods such as 60 s, or even longer than 120 s for some

polymers [7, 8]. These observations have been attributed, at least qualitatively, to the

effect of heat transfer between the DSC and sample, and to the fact that for a relative

short period a temperature gradient builds up within the sample because of the prob-

lem of thermal conduction [1, 2, 9–11].

Due to the lack of a systematic analysis of heat transfer within the TMDSC sys-

tem, however, this hypothesis has not been fully tested. Indeed, the data in the litera-

ture are rather contradictory. A typical example is the investigation of the relationship

between the measured heat capacity and the modulation frequency for different mate-

rials. Cser et al. [7] observed that the heat capacity of sapphire measured using fre-

quencies in the range from 0.01 to 0.10 rad s–1 (periods between approximately 600

and 60 s) decreased as a function of the square of the frequency, whereas the heat ca-

pacity of high density polyethylene decreased linearly with increasing frequency.

Our view is that the measured heat capacity can remain constant only when the

phase angle depends linearly on the modulation frequency, as suggested by our previ-

ous work on the effect of heat transfer on the phase angle [11]. These heat transfer ef-

fects were considered, however, with the assumption that the temperature of the sam-

ple is uniform throughout its thickness. More realistically, though, the influence of

the temperature gradient in the sample on the TMDSC measurement, particularly for

short periods (high frequencies), should not be neglected. In the present work, the ef-

fect of heat transfer on the heat capacity measurement will be discussed in terms of

the contributions arising from the properties of the sensor, the heat transfer interface

between sensor and sample, and the properties of the sample, within the framework

of a further refinement of our previous model to allow for thermal conduction within

the sample itself. Using this model, it is also possible to analyse the heat transfer in a

multi-layer system of either homogeneous or heterogeneous materials.

Theory of heat capacity measurement by TMDSC

In this section we review briefly the assumptions inherent in and the conclusions

drawn from an earlier simpler model of TMDSC, identified schematically by

Model B in Fig. 1. The temperatures on the sample side and reference side of the

TMDSC cell are considered to be measured experimentally by sensors, as indicated,

with the properties of the sample side and reference side sensors being identical. This

implies that in the absence of any sample there will be no measured temperature dif-

ference between sample and reference side, and hence no heat flow; in practice there

will usually be some asymmetry in the construction of the TMDSC cell, and hence a

certain heat flow even with no sample, but this can be allowed for by an appropriate

calibration procedure.

In the present and earlier models, it is assumed that it is the reference side sensor

that follows exactly the programmed temperature, consisting of a sinusoidal modula-
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tion superimposed in general on a linear heating (or cooling) rate, as expressed by

Eq. (1) below. This corresponds, of course, to a sinusoidally modulated heating rate

and gives rise to the modulated heat flow as the output, from which the heat capacity

can be determined. In the analysis that follows, the symbols used throughout are

listed for the convenience of the reader at the end of the text and before the Appendix.

The measured specific heat capacity is calculated from the ratio of the heat flow

to the heating rate, and may make use of the average values (for Cp,ave, which is analo-

gous to the specific heat capacity obtained by conventional DSC) or the amplitudes

(for the complex specific heat capacity, Cp

*). The heat flow is found from the temper-

ature difference ∆T between the reference (Tσr) and sample (Tσs) sensors, the tempera-

tures of which are shown later to be:

T T t A tσ β ωr T= + +0 0 sin (1)

T T t P A tσ σ σβ ω φs s s s= + − + +0 0 ( ) sin( ) (2)

where T0 is the initial temperature, t is time, β0 is the underlying heating rate, AT is the

amplitude of temperature modulation, Aσs is the amplitude of sample side sensor tem-

perature modulation, ω is the frequency of the temperature modulation, φσs is the

phase difference between reference and sample side sensor temperatures, and Ps is a

parameter equivalent to a time constant and defined as:

P
m C L

k Y
s

s p,s= σ

σ

(3)

where ms and Cp,s are the mass and specific heat capacity of the sample, respectively,

Lσ and kσ are the thickness and thermal conductivity of the sensor, respectively, and Y
is the contact area between sensor and sample.

J. Therm. Anal. Cal., 64, 2001

JIANG et al.: COMPLEX HEAT CAPACITY 87

Fig. 1 The present heat transfer model (Model C) and earlier models (A and B) for comparison



Therefore:

∆T T T P A t A t= − = + − +σ σ σ σβ ω ω φr s s T s s0 sin sin( ) (4)

and the instantaneous heating rate β can be written as:

β β ω ωσ= = +& cos( )T A tr T0 (5)

Now, the heat capacity can be defined as either an average value or a complex

value, as follows.

i) Specific average heat capacity, Cp,ave.

The specific average heat capacity, Cp,ave, may be calculated from the ratios of

the average values of the specific heat flow, q m s

–1, and the heating rate, β, as follows:

C
q

m

T P
Pp,ave

s

s
s= ∝ = =

β β
β
β

∆ 0

0

(6)

where the superscript bars indicate average values.

It can be seen that Cp,ave returns the input value for the specific heat capacity of

the sample, Cp,s, and is independent of the modulation frequency. However, it cannot

be measured under quasi-isothermal conditions because the average heating rate is

zero, and the specific average heat capacity has no meaning under these conditions.

ii) Specific complex heat capacity, Cp

* .

According to Schawe’s definition [12], the modulus of the specific complex heat

capacity |Cp

* | is written as:

| |C
A

m A

A

A
p

* q

s

Tconstant=








 =

β β

∆ (7)

where Aq and Aβ are the amplitudes of the heat flow and heating rate, respectively, and

A∆T is the amplitude of the temperature difference ∆T. This latter may be derived from

the expression for ∆T given by Eq. (4), which gives:

A A A A∆T s s T s= + −σ σ σφ2 2 2( ) (8)

for quasi-isothermal experiments for which β0=0, while Ab is obtained from Eq. (5)

as:

A Aβ ω= T (9)

Clearly the specific complex heat capacity can be defined even under quasi-

isothermal conditions. However, it can be seen that the complex heat capacity mea-

surement is greatly influenced by Aσs and φσs, in other words by the effect of heat

transfer and by the modulation frequency. These effects were discussed in our earlier

work [10, 11], and are considered again in more detail here.
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Model of heat transfer in TMDSC under quasi-isothermal
conditions

Two previous heat transfer models for TMDSC are illustrated schematically in Fig. 1

and denoted as Model A and Model B. Model A was suggested by Wunderlich and

co-workers [1, 2], in which the measured temperature was assumed to be the sample

temperature, Ts, and the heat transfer from heater to sample is influenced by the heat

transfer coefficient, h. In this model, the phase angle between sample and heater tem-

peratures was examined. In Model B, the measured temperature is regarded as the

sensor temperature [11], and hence the TMDSC measurement is not only affected by

heat transfer between the sample and sensor but also by the thermal properties of the

sensor. However, in Model B, it is assumed for simplicity that thermal conduction

within the sample is infinitely large. This is a reasonable approximation only for thin

or highly thermally conductive materials, and at low frequency, which implies that,

under most situations, heat transfer within the sample itself should be considered.

Therefore, a further refinement (Model C) is examined in this work in which the sam-

ple is divided into two layers, and heat transfer between the two layers occurs by ther-

mal conduction.

The mathematical approach adopted here, and in our earlier work also [10, 11],

is very similar to that used by Ozawa and Kanari [4, 13], though there are significant

differences in detail. These authors, for example, include heat loss to the surround-

ings as well as mutual heat exchange between the sample and reference sides, where-

as these effects are not included in the present analysis. There are also differences in

that Ozawa and Kanari select the sample temperature as the reference modulation,

with the measured output signal being the temperature difference between sample

and reference, whereas we select the reference sensor for the programmed modula-

tion, with the temperature difference between the sample side and reference side sen-

sors providing the measured output signal. Clearly the sample itself will have a differ-

ent amplitude and phase from those of the sample side sensor, which was in part the

subject of our earlier work [11]. These differences will be seen to be even more pro-

nounced in the present work where the finite thermal conductivity of the sample im-

plies a temperature gradient in the sample, and hence the impossibility of defining a

unique sample temperature.

It should also be pointed out that Model C remains highly simplified. The sen-

sors respond to the heat input from the TMDSC heater (or furnace), with heat transfer

occurring by conduction through highly conductive materials, even if the geometry of

the cell is considerably more complex than is implied by the schematic diagram.

Also, the sample will usually be contained in an aluminium pan, with a corresponding

pan on the reference side; these have been omitted in order to simplify the analysis,

but could be included in an exactly analogous way in a more detailed model. Like-

wise, heat loss from both sample and reference sides is ignored, but could be mod-

elled by the inclusion of a heat transfer coefficient from sample and reference to the

surroundings.
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As mentioned above, the reference side sensor temperature is assumed to follow

the programmed temperature (Eq. (1)). In an analogous way to the derivation of

Eq. (2), the heater temperature Td can be expressed in the steady state as:

T T t P A td d d= + + + +0 0β ω φσ( ) sin( ) (10)

in which Pσ is a time constant for the sensor, and is given by (see also Appendix,

Eq. (A17)):

P
m C L

k Y
σ

σ σ σ

σ

= p,
(11)

and Ad and φd can be expressed as A A Pd T= +1 2 2ω σ and φd=arctan(ωPσ). Here, mσ and

Cp,σ are the mass and specific heat capacity of the sensor, and the analysis is based on

the assumption that the heat flow by conduction from heater to the sensor is propor-

tional, by a factor mσCpσ, to the rate of change of sensor temperature, assuming no

heat loss.

On the sample side, the heat flow from heater to sensor is:

q k Y T T Ld s d s→ = −σ σ σ σ( )/ (12)

while that from the sensor to the lower sample layer is, as before:

q hY T Tσ σs sl s sl→ = −( ) (13)

and that from the lower sample layer to the upper sample layer is:

q k Y T T Lsl su s sl su s→ = −( )/ (14)

The subscripts sl and su refer to the lower and upper sample layers, respectively.

Furthermore, we can write:

q q m C Td s s sl p, s→ →− =σ σ σ σ σ
& (15)

q q m C Tσs sl sl su sl p,sl sl→ →− = & (16)

and

q m C Tsl su su p,su su→ = & (17)

again assuming no heat loss to the surroundings. In order to proceed, the temperatures

of the sample side sensor, lower sample layer and upper sample layer may be written

in general as:

T a b t c d t e tσ
τ ω ωs

–t/
e 1= + + + +1 1 1 1 1sin cos (18)

T a b t c d t e tsl

–t/
e 2= + + + +2 2 2 2 2

τ ω ωsin cos (19)

T a b t c d t e tsu

–t/
e 3= + + + +3 3 3 3 3

τ ω ωsin cos (20)

The derivatives with respect to time of Eqs (18)–(20), can be expressed as:
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& cos sinT b
c

d t e tσ
τ

τ
ω ω ω ωs

–t/
e 1= − + −1

1

1

1 1 (21)

& cos sinT b
c

d t e tsl

–t/
e 2= − + −2

2

2

2 2τ
ω ω ω ωτ

(22)

& cos sinT b
c

d t e tsu

–t/
e 3= − + −3

3

3

3 3τ
ω ω ω ωτ

(23)

If we consider the steady state condition, then the terms including c1, c2 and c3

are zero and the net heat flow into the sample side sensor can be related to its rate of

change of temperature by Eq. (15), which becomes:

k Y T T L hY T T m C Tσ σ σ σ σ σ σ( )/ ( ) &
d s s sl p, s− − − = (24)

where &Tσs is given by Eq. (21) and the other temperatures by Eqs (10), (18) and (19).

Likewise, the net heat flow into the sample at the lower layer can be written from

Eqs (13), (14), and (16) as:

hY T T k Y T T L m C T( ) ( )/ &
σs sl su sl su su sl p,sl sl− − − = (25)

and from the heat transfer into the insulated upper layer of the sample we can write,

from Eqs (14) and (17):

k Y T T L m C Tsu su su su p,su su( )/ &
sl − = (26)

The solution to this heat transfer problem is given in the Appendix, and can con-

veniently be expressed in matrix form as:

1 0 0

1 1 0 0

0 0

– – –

– – –

–

ω ω ω
ω ω

ω

σP P P

P P

S

s,sl s,su

h,sl h,su

s–1 1 0 u

s,sl s,su

h,sl h,su

su

1 0 0ω ω ω
ω ω

ω

σP P P

P P

S

0 1 1 0

0 0 0 1 1

–

–

















































=

d

d

d

e

e

e

P

1

2

3

1

2

3

1

0

0

ω σ

0

0

























AT (27)

where Pσ, Ps,sl, Ps,su, Ph,sl, Ph,su and Ssu are time constants given by Eqs (A17) to (A22),

respectively.

The matrix above applies to any sample which consists of two layers, and which

may in general be different. If we now consider the special case in which each layer is

identical, thus allowing simply for thermal conduction within a uniform and homoge-

neous sample, then msl=msu=ms/2 where ms is the total sample mass, and we can fur-

ther simplify these equations by writing Ps=2Ps,sl=2Ps,su, Ph=2Ph,sl=2Ph,su, and S=Ssu.

Assuming steady state conditions, we can thus write the sample side sensor tem-

perature as:
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T T t P A tσ σ σβ ω φs s s s= + − + +0 0 ( ) sin( ) (2)

where Ps is given by Eq. (3), A d eσs = +1

2

1

2 and φσs is the phase angle between sample

sensor temperature and reference sensor temperature given by:

φσs arctan= 









e

d

1

1

(28)

or, by replacing e1 and d1 with expressions obtained from the matrix Eq. (27):

φσs =arctan( / )e d1 1

where e1= − − + − −ω ω ωσ σ σP P P P S S P P Ss h h[ ( ) ]4 2 2 2 4 2 and (29a)

d1= 4 2 2 2 2 2 2 22 2 2 2+ + + + + + + +ω σ σ( )P P P P P P P S P S Ss s h h s h

+ + + + + + +ω ωσ σ σ
4 2 2 2 2 2 2 2 2 64 4 4 2( )P S P P P P S P S P P S P P Sh h h h s s h ( )P P Sσ

2 2 2

h (29b)

Likewise, the lower sample temperature may be written:

T T t P P A tsl s h sl sl= + − + + +0 0β ω φ[ ( )] sin( ) (30)

where A d esl = +2

2

2

2 and φsl is the phase angle between the temperature of the lower

sample layer and the reference sensor temperature, and is given by:

φsl =








arctan

e

d

2

2

(31)

The upper sample temperature may be written as:

T T t P P S A tsu s h su su= + − + − + +0 0β ω φ[ ( ) ] sin( ) (32)

where A d esu = +3

2

3

2 and φsu is the phase angle between the temperature of the upper

sample layer and the reference sensor temperature:

φsu = 







arctan

e

d

3

3

(33)

In the limit of low frequencies, these phase angles become:

φ ωσ
ω

s s
→

→−
0

( )P (34)

φ ω
ω

sl s h
→

→− +
0

( )P P (35)

φ ω
ω

su s h
→

→− + +
0

( )P P S (36)

From Eq. (34), it can be seen that, for small phase angles, the phase angle of the

sample sensor depends linearly on frequency and is again proportional to sample

mass, sample specific heat capacity and sensor properties (Eqs (A18) and (A19)).

Meanwhile, if the heat transfer from sensor to sample is infinitely fast (h→∞), then

Ph→0 (Eq. (A20)), the temperature of the sample side sensor is identical to that of the

lower layer of the sample, and Eq. (35) can be rewritten as:
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φ ω ω
ω

σ

σ
sl s

sl p,sl

→
→− =−

0

2
P

m C L

k Y
(37)

which is identical to the analogous equation derived from Model A [1, 2]. It should be

noted, however, that this identity occurs only in the limit ω→0. There are two reasons

for this restriction.

First, despite the fact that Eq. (37) is derived assuming infinitely good heat

transfer to the lower sample layer, there still remains the upper sample layer with heat

transfer by conduction to it from the lower sample layer. This is only eliminated if the

thermal conductivity is infinite, in which case S→0, and from Eq. (36) we obtain an

equation identical to Eq. (37) for the upper sample layer.

The restriction ω→0 still applies in respect of a comparison with Model A, how-

ever, for the second reason. This is that in Model A the phase angle is considered be-

tween the sample temperature and the heater temperature, whereas here the phase an-

gle is between the sensors on the sample and reference sides. For this reason, in our

model with h→∞ and k→∞ there remains a non-linear dependence of phase angle fσs

on frequency, which can be shown from the matrix Eq. (27) with Ph=0 and S=0 to be

given by:

φ ω
ωσ

σ σ
s

s

s

= −
+ +









arctan

( )

P

P P P1 2
(38)

From this it is clear that for optimum conditions we require a small value for Pσ,

the time constant for the sensor.

To examine the effect of finite values of h and k on the measured specific com-

plex heat capacity, we must return to Eqs (7)–(9), from which the modulus of the spe-

cific complex heat capacity can be written:

| |C
A

A

A

A
p

* s

T

s

T

sconstant= −







 +









1
1

2 2

2

ω
φσ σ

σ (39)

The general expression with A d eσs = +1

2

1

2 and φσs given by Eqs (28) and (29) is

too complex to derive any simple frequency dependence for |Cp

* |. It is clear, though,

that at sufficiently low frequency that A Aσs T≈ , the dependence in Eq. (39) reduces to

φσs/ω which, from Eq. (34), leads to a constant, frequency independent, value for the

complex specific heat capacity. In general, however, Aσs<AT and –φσs<ωPs, and these

inequalities increase with increasing frequency such that |Cp

* | deviates increasingly

from its zero frequency value. The magnitude of this deviation depends on the heat

transfer conditions and on the properties of the sample, in particular, and its evalua-

tion requires numerical analysis. Nevertheless, it is clear that significant deviation of

Cp

* from its correct value generally occurs when the phase angle departs from a linear

frequency dependence, and further comment on this is made in the sections that fol-

low.
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In this work, we investigate the effect of heat transfer from the sensor to the bot-

tom layer of the sample, and also of that from the bottom to the top layer within the

sample, on the dependence of both the phase angle and the specific complex heat ca-

pacity on the modulation frequency. These theoretical predictions are then compared

with the experimentally measured values of Cp

* for polycarbonate under quasi-iso-

thermal conditions.

Experimental

Materials

Polycarbonate was used for the TMDSC measurements of complex specific heat ca-

pacity and phase angle as a function of modulation frequency. It has a glass transition

temperature of approximately 145°C. The extrusion grade polycarbonate (Lexan, GE

Plastics), was obtained as a solid rod 40 mm diameter (trade name Tecanat) extruded

by Ensinger, from which the samples were machined. Smaller rods, with diameter

5 mm to suit the aluminium crucibles (pans) of the DSC, were turned and then parted

on a lathe into discs of thickness ranging from 0.25 to 1.50 mm.

Quasi-isothermal ADSC programs

The particular variant of TMDSC used here was Alternating DSC (ADSC, Mett-

ler-Toledo). Quasi-isothermal ADSC experiments were performed at a constant tem-

perature of 100°C, in other words in the glassy state for polycarbonate, with a modu-

lated temperature amplitude of 0.5 K; the period was varied between 30 and 1200 s.

The intracooler was used for all measurements and nitrogen was used as the purge gas

with a flow rate of 80 ml min–1.

Simulations

The theoretical simulations based on Model C essentially require the solution of the

matrix Eq. (27) for selected values of the parameters defining the simulated condi-

tions. These calculations have been performed using MATLAB (version 4.2, Copy-

right © 1984–1994 by The Mathworks, Inc.). The main parameters used in the simu-

lation are: kσ=0.6 W m–1 K–1, Lσ=1 mm, Y=19.6 mm2, mσ=30 mg, Cp,σ=0.5 J g–1 K–1,

ms=12.0 mg, ks=0.2 W m–1 K–1, and Cp,s=1.5 J g–1 K–1, unless otherwise specified.

Results and discussion

The theoretical predictions for the effects of the instrumental parameters on the phase

angle and on the specific heat capacity measurement have been simulated in terms of

three aspects, namely the properties of the sensor, the heat transfer coefficient at the

interface between the sensor and sample, and the properties of the sample.
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Effect of the sensor properties

It has been shown that the influence of the sensor on the TMDSC measurement is de-

scribed by the parameters Pσ and Ps (Eqs (A17), (A18) and (A19)). Indeed, this is true

even under idealised conditions for which the heat transfer coefficient from sensor to

sample and the thermal conductivity of the sample are both infinite, as shown by

Eq. (38). These observations mean that the effect of heat transfer is related not only to

kσ but also to the density, the specific heat capacity, and the geometric size of the sen-

sor. However, because of the complexity of the design of a real sensor, the analysis

has been simplified in this work by considering the density and dimensions of the

sensor to be fixed while the specific heat capacity and thermal conductivity have been

varied.

The effect of the specific heat capacity of the sensor is shown in Fig. 2: as the

specific heat capacity of the sensor increases, –φ decreases and its maximum value

appears at a lower frequency, while all the curves for the various values of Cp,σ con-

verge to a linear region at low frequency, all having the same slope, Ps (Eqs (3) and

(34)). From the analysis of Model C, changing the specific heat capacity of the sensor

only changes Pσ (refer to Eq. (A17)). Since the numerator in Eq. (29) indicates that

the departure from linearity with increasing frequency is determined principally by

the term PσPh+PσS–S2, it follows that this departure from linearity will occur at a

lower frequency as Pσ, and hence the specific heat capacity of the sensor, increases,

as is seen in Fig. 2.

Figure 3 illustrates the influence of the specific heat capacity of the sensor, Cpσ,,

on the measurement of Cp

* for the sample. When Cp,σ decreases from 3.20 to

0.10 J g–1 K–1, the upper limit of the measuring frequency for an error of 2% in the

specific heat capacity of the sample increases from 0.026 to 0.24 rad s–1 (a period
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Fig. 2 The effect of Cp,σ on the (negative) phase angle, φσs. (kσ=0.6 W m–1 K–1;
L=0.5 mm; h=2000 W m–2 K–1). The value of Cp,σ is indicated in units of
J g–1 K–1 vs. each curve



range of approximately 240 to 24 s). With regard to the measurement of Cp

* , there-

fore, sensors with small heat capacities can enlarge the frequency range over which

acceptable measurements can be made. The small Cp,σ, however, will cause an in-

crease of the phase angle (refer to Fig. 2).

The corresponding effect of the thermal conductivity of the sensor on the phase

angle measurements is shown in Fig. 4, from which two points should be noted. On
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Fig. 3 The effect of Cp,σ on the measured Cp

* for frequencies from 0.02 to 0.50 rad s–1.
Values of Cp,σ are taken as 0.1 (top), 0.2, 0.4, 0.8, 1.6 and 3.2 (bottom) J g–1 K–1.
Values of kσ, L and h are the same as for Fig. 2

Fig. 4 The effect of kσ on the (negative) phase angle φσs. (Cp,σ=0.5 J g–1 K–1; L=0.5
mm; h=2000 W m–2 K–1). The value of kσ is indicated in units of W m–1 K–1 vs.
each curve



the one hand, –φ for the sensor with different values of kσ again increases linearly at

low frequency, but with differing slopes as Ps is proportional to 1/kσ (refer to Eqs (3),

(A18) and (A19)). On the other hand, with increasing kσ the maximum –φappears at

higher frequencies because in the numerator of Eq. (29) the terms 2ω2(PσPh+PσS–S2)

and ω4PσPhS
2 decrease as kσ increases, as a result of the decrease in Pσ (Eq. (A17)). In

consequence, the region for which a linear dependence of the phase angle on fre-

quency is observed extends to higher frequencies as kσ increases.

Figure 5 explores the effect of the thermal conductivity of the sensors on the

measured complex specific heat capacity, Cp

* . Under the conditions adopted, the mea-

sured Cp

* value decreases with increasing frequency, in a manner that is dependent

upon the thermal conductivity of the sensors kσ (it was assumed here that the sample

and reference sensors have identical properties). When kσ is 0.2 W m–1 K–1, the value

of Cp

* drops from 1.50 to 0.65 J g–1 K–1, which corresponds to a reduction of over 50%

over the frequency range of 0 to 0.5 rad s–1. In the most widely used period range of

90~30 s (frequency of 0.07~0.21 rad s–1), the measured value of Cp

* is up to 25% less

than the true value. On the other hand, when kσ takes the largest value, 6.4 W m–1 K–1,

the decrease in Cp

* over the whole range is less than 15%. If the acceptable error is

±2% (however, in the simulation, the positive error is impossible), the measuring fre-

quency used should not exceed 0.24 rad s–1 (periods down to 26 s) for

kσ=6.4 W m–1 K–1. Referring back to Fig. 4, for kσ=0.2 W m–1 K–1 the phase angle mea-

sured at 0.07 rad s–1 has already deviated from linearity; in contrast, for

kσ=6.4 W m–1 K–1 the phase angle at a frequency of 0.24 rad s–1 is still linearly related

to the frequency. Thus, it is clear that kσ can greatly affect the measurement of Cp

* and

that, compared with the contribution of Cp,σ to the TMDSC measurement, increasing
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Fig. 5 The effect of kσ on the measured Cp

* over a range of frequencies from 0.02 to
0.50 rad s–1. The values of kσ are 0.2 (bottom), 0.4, 0.8, 1.6, 3.2 and 6.4 (top)
W m–1 K–1. Values of Cp,σ, L and h are the same as for Fig. 4



kσ not only expands the measuring frequency range, but also decreases the phase an-

gle by means of reducing the effect of heat transfer in the sensor.

Effect of heat transfer conditions

Figure 6 shows the relationship between the phase angle and modulation frequency

for different values of the heat transfer coefficient, h, from which it can be seen that at

low frequencies –φdepends linearly on the frequency with a gradient of Ps. The linear

regime is from 0 to 0.05 rad s–1 for poor heat transfer from the sensor to sample, for

example, h=400 W m–2 K–1, and reaches up to just less than 0.10 rad s–1 for good heat

transfer (h=3600 W m–2 K–1). In fact, the phase angle appears to increase rapidly when

h increases from 400 to 1200 W m–2 K–1, and then remains rather constant when h is

increased further. This means that the contribution of thermal conduction within the

sample to the overall resistance to heat flow first increases and then stabilises as the

interface resistance decreases. The factors which cause the deviation of the frequency

dependence of the phase angle from linearity can be identified by an examination of

the various terms in Eq. (29), from which it is clear that this deviation depends not

only on the heat transfer from sensor to sample, but also on the properties of the sen-

sor and sample.

The quality of the heat transfer interface between the sensor and sample has a

significant effect on the measured specific heat capacity, as is illustrated in Fig. 7. In-

creasing h can reduce the effect of frequency on the measured specific heat capacity,

similar to expanding the range of linearity between φσs and ω (refer to Fig. 6); how-

ever, both Figs 6 and 7 show that the effect becomes very small when h reaches val-

ues of 1200 W m–2 K–1 and larger. Therefore, although polishing the sample surface or
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Fig. 6 Simulation of the effect of heat transfer coefficient h on the (negative) phase an-
gle, φσs; h increases linearly from 400 (bottom) to 3600 W m–2 K–1 (top) with an
interval of 800 W m–2 K–1



introducing a heat transfer fluid is helpful in ensuring more consistent heat transfer

conditions, they have little use in expanding the modulation frequency range for Cp

*

measurement.

Effect of sample properties

We turn now to the effect of the properties of the sample, such as sample thickness

and thermal conductivity, on the deviation of the measured Cp

* value from the real

value.

Figure 8 shows how the phase angle depends on the sample thickness for

Model C. As a comparison, the results calculated from Model B [11] are also shown

in the figure (dashed lines). At low frequency, the phase angle for samples with dif-

ferent thicknesses is linearly dependent on the frequency, and the curves for samples

of the same thickness converge to the same slope for Models B and C. This slope is

given by Ps in Eq. (3), from which it can be seen to increase linearly with sample mass

ms, and hence also with sample thickness Ls. Increasing the sample thickness in both

models narrows the frequency range in which a linear relationship between the phase

angle and frequency is observed.

Indeed, the departure from linearity is particularly marked here, and this can be

understood from a consideration of Eq. (29). Changing the sample thickness, and

hence sample mass, has an effect on both Ph and S (Eqs (A20), (A21) and (A22)), and

both of these parameters contribute to the non-linear terms in the numerator of

Eq. (29), thus accentuating the effect of the sample thickness. One can also see from

Fig. 8 that –φ from Model C (full lines) is significantly smaller than that obtained us-

ing Model B (dashed lines), and that this is true in general as a function of frequency
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Fig. 7 The effect of heat transfer coefficient h on the measured complex specific heat
capacity over a frequency range from 0.02 to 0.50 rad s–1. The heat transfer coef-
ficient, h, increases linearly from 400 (bottom) to 3600 W m–2 K–1 (top) with an
interval of 800 W m–2 K–1



and particularly at lower frequency for thick samples, though a cross-over does occur

eventually as the frequency increases. This implies, as noted earlier, that increased re-

sistance to heat transfer, in this case from a finite thermal conductivity, reduces the

phase angle.

According to Model B, the maximum value of –φshifts to higher frequency and de-

creases monotonically with decreasing sample thickness. In contrast, the predictions

from Model C show that the dependence on sample thickness of the maximum value of

–φ, and of the frequency at which it occurs, is more complex. The maximum value of –φ
increases as the sample thickness is increased from 0.25 to 1.50 mm. At the same time, it

shifts to lower frequencies when the thickness increases from 0.25 to 0.75 mm, but shifts

back to higher frequencies for thicknesses of 1.00, 1.25 and 1.50 mm. Further discussion

of the effect of sample thickness on the frequency dependence of the phase angle in the

light of the prediction from Eq. (29) is rather difficult on account of the complexity of the

expression in the denominator of this equation.

Figure 9 shows that the measured Cp

* decreases with increasing frequency. The

decrease over the simulation frequency range increases from 16 to 36% when the

sample thickness increases from 0.1 to 0.6 mm. This means that the acceptable mea-

suring frequency range for which the decrease in the measured Cp

* is less than 2% of

the original value is considerably narrowed as the sample thickness increases. This is

in good agreement with experimental specific heat capacity measurements on

polycarbonate using TMDSC, shown in Fig. 10, from which it can be seen that the

measured Cp

* for polycarbonate depends on both the modulation frequency and the

sample thickness. With decreasing frequency, Cp

* at 100°C tends to a constant value

of 1.62 J g–1 K–1, which is very close to the value (1.63 J g–1 K–1) measured by conven-

tional DSC with a heating rate of 20°C min–1. It is clear from both the simulation and
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Fig. 8 The effect of sample thickness on the (negative) phase angle φσs. Thickness
ranges linearly from 0.25 (bottom) to 1.50 mm (top) with an interval of
0.25 mm. (h=2000 W m–2 K–1; k=0.6 W m–1 K–1; Cp,σ=0.5 J g–1 K–1). Solid lines
are for Model C and dashed lines for Model B



the experimental results that if a thinner sample is used, a constant value of Cp

* is

achieved up to a higher frequency. In Fig. 10, the experimentally measured effect of

sample thickness is not as regular as that predicted in the simulation (Fig. 9). This is

partly attributed to the different surface qualities for different samples, which may

cause a variation of the heat transfer coefficient. Another source may be introduced

by the different heat losses from the side walls of the samples with different thick-
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Fig. 9 The effect of sample thickness on the measured specific heat capacity. Thickness
ranges between 0.1 (top) and 0.6 mm (bottom) with an interval of 0.1 mm.
Values of h, kσ and Cp,σ are the same as for Fig. 8

Fig. 10 The measured specific heat capacity of polycarbonate at 100°C by TMDSC.
The modulation periods used are 30, 36, 48, 60, 96, 120, 180 and 240 s. The
corresponding frequencies are 0.209, 0.175, 0.131, 0.105, 0.065, 0.052, 0.035
and 0.026 rad s–1, respectively



nesses, which has not been taken into account in Model C. Also, the experimental re-

sults at frequencies of 0.17 and 0.21 rad s–1 (36 and 30 s of periods, respectively) are

not very reliable, particularly for the samples with larger masses, since at these fre-

quencies the maximum heating or cooling rate is outside the limits of the ADSC, and

is also affected by the Taulag of instrument, with the consequence that the tempera-

ture modulation is deformed slightly from the ideal sinusoidal wave. Thus the mea-

sured specific heat capacity values for these two frequencies should be treated with

some caution.

Figure 11 shows the effect of the sample thermal conductivity, ks, on the phase

angle. With increasing ks the phase angle becomes larger, and the region over which

there is a linear relationship between the phase angle and frequency is extended. For

example, given the conditions used to construct Fig. 11, the frequency dependence of

the phase angle can be regarded as linear over a range from 0 to approximately

0.06 rad s–1 for ks=0.1 W m–1 K–1 which is a typical value for the thermal conductivity

of a polymer; for ks=1.6 W m–1 K–1, the upper limit of the frequency for linearity is ex-

tended to about 0.08 rad s–1. This corresponds to a change in the period of modulation,

from 104.7 to 78.5 s. It is thus apparent that the linearity between the phase angle and

frequency extends over a wider frequency range for high conductivity materials than

for low conductivity materials.

The results also show that the effect on the phase angle caused by changing the

thermal conductivity of the sample diminishes significantly as ks increases, and that

the difference between the phase angle for different values of ks can be observed more

easily at high frequency than at low frequency. This point is very important because it

implies a lack of sensitivity of the phase angle to the thermal conductivity of the sam-
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Fig. 11 The effect of ks on the (negative) phase angle φσs. Values of ks are 0.05, 0.1, 0.2,
0.4, 0.8 and 1.6 W m–1 K–1 in order from bottom to top (h=2000 W m–2 K–1;
ks=0.6 W m–1K–1; Cp,σ=0.5 J g–1K–1)



ple within certain ranges of frequency and ks. For instance, suppose that a series of

samples, with thermal conductivities from 0.05 to 1.6 W m–1 K–1, are used to simulate

the results shown in Fig. 11. If an experiment is performed at a frequency of

0.1 rad s–1, the response of the phase angle in TMDSC shows only about a 5% differ-

ence between the phase angle corresponding to the lowest and highest values of the

thermal conductivity. On the other hand, if the experiment is performed at 0.3 rad s–1,

the difference in the phase angle is increased to 40%. Likewise, at a frequency of

0.2 rad s–1 (period approximately 30 s), for example, there is a much more significant

change in the phase angle for the lower thermal conductivities than for the higher

thermal conductivities. This would imply that the phase angle is sensitive to changes

in the thermal conductivity of poor thermal conductors, including polymers for which

typical values fall in the range 0.1 to 0.3 W m–1 K–1, but is rather insensitive to

changes in the thermal conductivity of better thermal conductors.

The effect of the thermal conductivity of the sample, ks, on the Cp

* measurements

is shown in Fig. 12. As the modulation frequency increases, the measured Cp

* drops

much more rapidly for a sample with a lower ks value than it does for a sample with

higher ks value. In practice, therefore, the modulation period used for a lower ks sam-

ple should be much longer than that for a higher ks sample. This is one reason why the

Cp

* value for a 10 mg sample of sapphire (ks=2.6 W m–1 K–1 and Cp=0.91 J g–1 K–1 at

373 K) can be measured with a period of 30 s [1], whilst for a 5 mg polystyrene sam-

ple (ks=0.128 W m–1 K–1, Cp=1.62 J g–1 K–1 at 373 K) the period was suggested to be

longer than 120 s [8].

The effects of the properties of the sample on the measured Cp

* determine the ba-

sis of choosing reliable modulation conditions for the measurements. In general, a

thin and dense sample having a smooth contact surface with the crucible should be

measured with a relatively long period of the temperature modulation, and this is par-
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Fig. 12 The effect of ks on the measured specific heat capacity for frequencies from
0.02 to 0.50 rad s–1. Values of ks are 0.05 (bottom), 0.10, 0.20, 0.40, 0.80 and
1.60 (top) W m–1 K–1. Values of h, kσ and Cp,σ are the same as for Fig. 11



ticularly important for poor thermally conducting materials. The commonly used

range of the period for a polymer with a mass of 5 mg (ks ranging 0.1~0.3 W m–1 K–1)

is 60~240 s.

Conclusions

A more realistic model (Model C) than either of those used in earlier work (Model A

or Model B) has been developed to study the effect of heat transfer on the phase angle

and heat capacity measurements by TMDSC. In this latest model, a temperature gra-

dient within the sample has been taken into account by allowing for heat transfer by

thermal conduction within the sample. The influence of the DSC sensors, the heat

transfer conditions between the sensor and sample, and the properties of the sample

have been investigated by varying each parameter in turn. The effect of the sample

thickness on the measurement was also studied experimentally. The results show that

increasing the thermal conductivity of the sensor effectively enlarges the measuring

range of modulation frequency over which an accurate value of heat capacity can be

measured by quasi-isothermal TMDSC. Decreasing the heat capacity of the sensor

also expands the useful modulation frequency range, although it results in a larger

phase lag between the heat flow and heating rate. An improved heat transfer interface

between sample and sensor will help to measure heat capacity more precisely. The ef-

fects of the thickness and the thermal conductivity of the sample on the Cp

* measure-

ment show that tests with a thinner sample provide better results than with a thicker

sample. For thicker samples, a relatively long period is needed. The results from the

simulation also show that a wider frequency range can be applied in measurements of

samples with higher thermal conductivity. In general, it is concluded that reliable val-

ues for Cp

* may be obtained when the experimental conditions are such that the heat

transfer phase angle depends linearly on the modulation frequency. When a signifi-

cant departure of the phase angle from a linear dependence on frequency occurs, this

is a sure sign that the measured specific complex heat capacity will decrease signifi-

cantly below its correct value if the frequency of modulation is further increased.

Thus, the measurement of the phase angle can provide a check on the validity of the

measured value of Cp

* .

List of symbols

A – amplitude

Cp – specific heat capacity

h – heat transfer coefficient

k – thermal conductivity

L – thickness

m – mass

P – parameter with dimensions of time (Eqs (A17–A21))

q – heat flow
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S – parameter with dimensions of time (Eq. (A22))

t – time

T – temperature

Y – contact area

β – heating rate

φ– phase angle

ω – angular frequency

List of subscripts

d – DSC heater

h – heat transfer coefficient

q – heat flow

s – sample

sl – lower sample layer

su – upper sample layer

T – temperature

β – heating rate

∆T – temperature difference

σ – sensor

σr – reference side sensor

σs – sample side sensor

Appendix

Solution of heat transfer equations

Substituting Eqs (10) and (18) to (23) into Eqs (24) to (26), and equating coefficients,

gives the following:

i) Constant coefficients

k Y T P a L hY a a m C bσ σ σ σ σβ( )/ ( )0 0 1 1 2 1+ − − − = p, (A1)

hY a a k Y a a L m C b( ) ( )/1 2 2 3 2− − − =su sl p,slsu (A2)

k Y a a L m C bsu su su p,su( )/2 3 3− = (A3)

ii) Coefficients of t

k Y b L hY b bσ σβ( )/ ( )0 1 1 2 0− − − = (A4)

hY b b k Y b b L( ) ( )/1 2 2 3 0− − − =su su (A5)

k Y b b Lsu su( )/2 3 0− = (A6)
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iii) Coefficients of sinωt

k Y A d L hY d d m C eσ σ σ σ ω( )/ ( ) ( )T p,− − − = −1 1 2 1 (A7)

hY d d k Y d d L m C e( ) ( )/ ( )1 2 2 3 2− − − = −su su sl p,sl ω (A8)

k Y d d L m C esu su su p,su( )/ ( )2 3 3− = − ω (A9)

iv) Coefficients of cosωt

k Y P A e L hY e e m C dσ σ σ σ σω ω( )/ ( ) ( )T p,− − − =1 1 2 1 (A10)

hY e e k Y e e L m C d( ) ( )/ ( )1 2 2 3 2− − − =su su sl p,sl ω (A11)

k Y e e L m C dsu su su p,su( )/ ( )2 3 3− = ω (A12)

From Eqs (A4), (A5) and (A6), one finds:

b b b1 2 3 0= = =β (A13)

and hence from Eqs (A1), (A2) and (A3), the constants a1, a2 and a3 may be obtained

as:

a T P P T P1 0 0 0 0= − + = −β β( )s,sl s,su s (A14)

 a T P P P P T P P2 0 0 0 0= − + + + = − +β β( ) ( ) ( )s,sl s,su h,sl h,su s h (A15)

 a T P P P P S T P3 0 0 0 0= − + + + + = − +β β( ) ( ) (s,sl s,su h,sl h,su su3 s P Sh + ) (A16)

where:

P
m C L

k Y
σ

σ σ σ

σ

= p,
(A17)

P
m C L

k Y
s,sl

sl p,sl= σ

σ

(A18)

P
m C L

k Y
s,su

su p,su= σ

σ

(A19)

P
m C

hY
h,sl

sl p,sl= (A20)

P
m C

hY
h,su

su p,su= (A21)

S
m C L

k Y
su

su p,su su

su

= (A22)
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